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Abstract 
Artificial Intelligence (AI) has emerged as one of the most transformative technological advancements of the 21st century, revolutionizing 

industries ranging from healthcare and finance to logistics and education. However, this rapid growth is accompanied by significant environmental 

challenges, particularly in terms of energy consumption and greenhouse gas emissions. The AI lifecycle encompassing data acquisition, model 

training, deployment, and inference contributes to substantial ecological footprints, highlighting an urgent need for sustainable development 

principles to be integrated into AI design and deployment. 

This paper explores the dual dimensions of sustainable AI: AI for Sustainability and Sustainability of AI. The former focuses on leveraging AI 

technologies to address environmental challenges and advance the United Nations' Sustainable Development Goals (SDGs), while the latter 

addresses the environmental costs associated with AI systems themselves, including high energy consumption, inadequate lifecycle models, and 

fragmented regulatory frameworks. 

Through a qualitative and quantitative analysis of existing literature and case studies, this paper identifies key solutions to mitigate these impacts. 

These include developing energy-efficient AI hardware such as Neural Processing Units (NPUs), embedding sustainability principles across every 

stage of the AI lifecycle, and fostering cross-sector collaborations to establish standardized regulatory frameworks. For instance, Kneron Inc. has 

demonstrated that optimizing AI-specific hardware can reduce energy consumption by approximately 30%, offering a viable model for energy 

efficiency in AI deployment. 

The study concludes that achieving sustainable AI requires simultaneous technological, organizational, and legislative adjustments. Sustainability 

must not be treated as an afterthought but rather as a foundational principle for AI innovation. By prioritizing environmental considerations, AI 

systems can evolve into tools that drive progress without compromising the planet's ecological balance. 

Keywords: Sustainable Artificial Intelligence (AI), Energy Efficiency, Lifecycle Assessment (LCA), Neural Processing Units (NPUs), AI 

Carbon Footprint, Cross-Sector Collaboration, Regulatory Frameworks. 
 

 

1.0 Introduction 

Artificial Intelligence (AI) is now considered an indispensable 

element of technological advancement, fundamentally transforming 

industries including healthcare, finance, and even the broader social 

structure. However, this rapid proliferation has raised significant 

environmental concerns. The launch of ChatGPT in November 

2022, for instance, spurred a surge in AI investment, development, 

and deployment, but simultaneously escalated energy consumption 

and carbon emissions (Goldman Sachs, 2024). As computational 

demands continue to rise exponentially, there is a pressing need to 

better understand how AI systems can align with sustainable 

development goals and address environmental aspirations set forth 

by the United Nations. 

The sustainability discourse around AI can be categorized 

into two primary branches: AI for Sustainability and Sustainability 

of AI (Van Wynsberghe, 2021). The former concerns the application 

of AI in tackling critical environmental challenges, optimizing 

resource usage, and supporting the Sustainable Development Goals 

(SDGs). The latter focuses on addressing the environmental costs of 

AI technologies themselves, including energy consumption, carbon 

footprints, and electronic waste. This dual framework highlights a 

paradox: while AI holds immense potential for driving sustainability 

initiatives, its rapid expansion also intensifies humanity's 

environmental footprint (Alzoubi and Mishra, 2024; Naeeni and 

Nouhi, 2023). 

The environmental impacts of AI are primarily rooted in its 

high energy consumption. Training machine learning models, 

particularly deep learning algorithms, demands significant 

computational power. For instance, training a single Natural 

Language Processing (NLP) model can emit greenhouse gases 

equivalent to the lifetime emissions of five average cars (Strubell et 

al., 2020). Furthermore, computational demands for AI systems are 

now doubling every two months, outpacing Moore's Law, which 

traditionally predicted a doubling every two years (Goldman Sachs, 

2024). This accelerating demand necessitates more energy-efficient 

architectures, as traditional CPUs and GPUs remain suboptimal for 

AI workloads, leading to inefficiencies during both the training and 

inference phases (Basharat, 2022). 
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However, the challenges extend beyond hardware 

limitations. Organizational barriers, including poor lifecycle 

assessment, lack of standardized documentation, and fragmented 

policies, pose significant obstacles to achieving sustainability in AI 

(Prasad Agrawal, 2023; Rohde et al., 2024). Frameworks such as the 

Life Cycle Screening of Emerging Technologies (LiSET) and Life 

Cycle Assessment (LCA) have been proposed to evaluate 

environmental impacts during early stages of technological adoption 

(Hung et al., 2018; Thenemann et al., 2020). Yet, these frameworks 

often lack cultural and organizational adaptability, rendering them 

less effective in influencing sustainable practices. 

Policy gaps further compound these challenges. Current 

regulations are typically generalized and fail to address the unique 

environmental concerns posed by AI systems. Voluntary initiatives, 

such as the Artificial Intelligence Environmental Impacts Act of 

2024, have achieved limited success due to insufficient enforcement 

and lack of cross-sectoral collaboration (Perucica & Andjelkovic, 

2022; Kulkov et al., 2024). Without harmonized regulatory 

frameworks, efforts to minimize AI's ecological footprint remain 

fragmented and inconsistent. 

Addressing these issues requires a multi-faceted approach. 

Technological advancements, such as specialized Neural Processing 

Units (NPUs) designed for AI workloads, offer promising solutions 

for improving energy efficiency (Hudaszek et al., 2023). Equally 

important are holistic lifecycle management practices and robust 

policy interventions aimed at ensuring accountability and 

standardization across the AI ecosystem. 

Ultimately, the integration of sustainability principles into 

AI development is not merely an engineering challenge but a 

societal responsibility. Achieving sustainable AI necessitates 

coordinated efforts across technological, organizational, and 

legislative dimensions. This paper seeks to examine these 

challenges, propose actionable solutions, and present a 

comprehensive framework for embedding sustainability into every 

stage of the AI lifecycle. By doing so, it aims to ensure that AI 

continues to thrive as an innovative technology while respecting the 

planet's ecological limits. 

2.0 Literature Review 

This literature review focuses on the environmental concerns of AI 

while also assessing frameworks and strategies regarding those 

concerns. This section is organized into three key areas: the high 

energy consumption of AI, the limitations of AI lifecycle 

frameworks, and the lack of comprehensive regulations and 

standards. 

2.1 Energy-Intensive Nature of AI 

AI is increasingly being adopted in the market, and its pace has 

caused an exponential performance and impact on energy 

consumption and the environment. Strubell et al. (2020) pointed out 

that one training of an artificial intelligence model leads to the 

emission of approximately 600,000 pounds of carbon dioxide. This 

amount is equal to five lifetime emissions of a car each. AI has 

required exponentially more computational resources based on the 

amount of data, and the requirement has been rising at a month, with 

no sign of slowing down since mid-2018, compared to Moore’s rate 

of every two years (Goldman Sachs, 2024). 

Energy inefficiency is evident in both training and inference 

phases of the neural network. Training is a computationally heavy 

process, performed on a large dataset, whereas the second phase, 

called inference as well, requires a significant amount of energy (El-

Khattab & Fathy, 2023). This is made worse by the dependence on 

general-purpose CPUs and GPUs since these hardware systems are 

not designed to offer optimal AI results and hence consume 

additional power that is not actually needed (Basharat, 2022). 

Remedial actions towards the realization of energy efficient 

hardware have been embarked on. Yokoyama et al. (2023) 

underlined the importance of green AI undertakings with regards to 

the energy consumption of the machine learning frameworks. 

Another example is a startup Kneron Inc. that proposed to create 

NPUs, which are task-specific AI chips that consume much less 

power compared to traditional processors while being almost as 

efficient. Moving to such specific devices could help organizations 

reduce energy consumption dramatically, which points to the 

effectiveness of the technological approaches to tackle AI’s 

sustainability issue. 

2.2 Life Cycle Framework for AI Sustainability 

The adoption of lifecycle assessment (LCA) frameworks has 

emerged as a key method for embedding sustainability into both the 

development of AI technologies and their responsible usage. These 

frameworks are designed to evaluate the environmental implications 

of a product or technology throughout its entire life cycle. The Life 

Cycle Screening of Emerging Technologies (LiSET), developed by 

Hung et al. (2020), aims to enable developers to conduct an early 

assessment of the sustainability impacts that may arise when 

innovative technologies are scaled for widespread application. 

Similarly, Thenemann et al. (2020) provided guidance on 

performing prospective life cycle assessments for disruptive 

technologies, emphasizing the integration of sustainability into the 

initial design stages. These frameworks equip organizations with 

tools to pinpoint critical areas for improving efficiency, particularly 

in terms of energy and resource utilization, across various stages of 

the technology lifecycle. 

However, the effectiveness of lifecycle frameworks is often 

hindered by organizational practices and cultures that prioritize 

performance metrics and rapid scalability to meet growing demands. 

Kulkov et al. (2024) highlighted that sustainable, collaborative, and 

high-quality data practices have not yet fostered an effective data 

culture capable of supporting the successful implementation of 

LCA. This oversight perpetuates unsustainable business practices 

and neglects the broader organizational transformations needed to 

align AI systems with environmental goals. 

Agrawal (2023) reinforced this perspective, advocating for 

a more holistic approach to lifecycle management. This approach 

emphasizes integrating sustainability considerations not only at the 

outset but also throughout the later stages of building, deploying, 

and retiring AI models. By embedding sustainability as a core 

component rather than treating it as an afterthought, this approach 

ensures that environmental considerations are deeply integrated into 

the AI development lifecycle. 

2.3 Deficiencies in Guideline and Norm Making 

The absence of stabilized regulations and standardized norms in the 

artificial intelligence industry poses significant challenges to 

achieving sustainable AI practices. Perucica and Andjelkovic (2022) 

highlighted that existing policies are insufficient to adequately 

address the environmental impacts of AI technologies. This policy 

gap exacerbates AI's environmental footprint, creating 

inconsistencies across the industry, where some organizations 

prioritize efficiency while others emphasize performance. 



EEES | Emerging Environmental and Earth Sciences 

 

 Emerging Environmental and Earth Sciences 

https://emergingpub.com/index.php/ees       27 

To address these shortcomings, the Artificial Intelligence 

Environmental Impacts Act of 2024 was introduced, requiring 

organizations to voluntarily disclose environmental metrics related 

to their AI usage. While this represents a step towards greater 

accountability, Alzoubi and Mishra (2024) argued that corporate-led 

initiatives alone are inadequate for driving systemic innovation. 

Binding norms and mandatory reporting standards are essential for 

ensuring sustainability is implemented at scale across the AI 

ecosystem. 

One effective strategy for enhancing regulatory frameworks 

includes fostering increased cooperation among governments, 

industries, and academic institutions. Xiaoxi et al. (2020) 

emphasized the importance of standardizing AI measures in 

combating climate change, arguing that clear and well-defined 

standards are necessary to balance technological advancement with 

environmental preservation. Collaborative research initiatives led by 

universities can drive innovation in sustainable AI solutions, while 

industry groups serve as platforms for cross-organizational 

knowledge sharing and the dissemination of best practices. 

2.4 Necessary Summary of Challenges and Opportunities 

The literature identifies three critical challenges to achieving 

sustainable AI: 

1. Energy Consumption: The rising computational 

demands of AI have resulted in significant energy 

consumption and an unsustainable carbon footprint. 

Current hardware infrastructures are insufficiently 

equipped to address the environmental consequences of 

contemporary AI applications. 

2. Lifecycle Integration: While lifecycle frameworks 

provide valuable tools for assessing and mitigating 

environmental impacts, their effectiveness is hindered by 

legislative and organizational gaps. Additionally, 

prevailing organizational cultures often deprioritize 

sustainability, limiting the successful integration of these 

frameworks. 

3. Regulatory Gaps: The absence of cohesive policies and 

standardized procedures weakens collaborative efforts 

aimed at reducing AI's environmental impact. 

Addressing these challenges requires a multifaceted approach, 

including the adoption of energy-efficient hardware, embedding 

sustainability into lifecycle systems, and establishing robust and 

standardized regulatory frameworks. By integrating these strategies, 

the AI industry can harmonize technological advancement with 

environmental responsibility, paving the way for a more sustainable 

future. 

3.0 Methodology 

This paper employs a qualitative research design to operationalize 

the measure of sustainability in Artificial Intelligence through five 

interconnected procedures. A combination of literature reviews, 

case studies, frameworks, and data synthesis ensure that key aspects 

of sustainable AI-including organizational, technical, and policy 

dimensions are thoroughly examined. Below is a detailed 

breakdown of the methodology: 

1. Literature Analysis 

To achieve the research objectives, this study conducts a 

comprehensive literature review to identify gaps and barriers to 

sustainable AI. The review includes scholarly articles, industry 

reports, and policy papers, focusing on the environmental costs of 

AI systems and recommended solutions. The literature analysis 

emphasizes: 

• Energy Consumption in AI Models: Strubell et al. (2020) 

and El-Khattab & Fathy (2023) highlight the significant 

energy consumption and carbon footprint of AI training 

and inference processes, underscoring the need for more 

computationally efficient models. 

• Lifecycle Assessment Tools: Frameworks like LiSET 

(Hung et al., 2018) and Prospective LCA (Thenemann et 

al., 2020) provide tools for preliminary assessments of 

environmental impacts in emerging technologies. 

• Organizational and Cultural Factors: Studies by Kulkov et 

al. (2024) and Prasad Agrawal (2023) identify 

organizational cultures and systemic barriers that hinder 

sustainable AI integration. 

• Regulatory Voids: Perucica and Andjelkovic (2022) 

address the importance of regulatory standardization and 

interoperability in aligning AI development with 

environmental objectives. 

2. Case Study Analysis 

This study examines case studies of organizations and technologies 

recognized for environmentally sustainable AI systems. 

• Kneron Inc.: Known for its energy-efficient hardware, 

Kneron's NPU technology demonstrates up to 1000x 

energy savings and 10x computational efficiency 

compared to standard hardware. This aligns with 

recommendations from Hudaszek et al. (2023) and 

Basharat (2022), who emphasize leveraging native 

architecture for energy savings. 

• Hardware-Software Co-Optimization: Comparative 

analyses of post-ASIC and pre-ASIC AI hardware reveal 

differences in carbon footprints during machine learning 

processes. Yokoyama et al. (2023) and Xiaoxi et al. (2020) 

provide significant insights into the synergies between 

hardware and software for improved sustainability. 

3. Framework Development 

The study proposes a lifecycle framework structured around three 

core levels: 

• Organizational Level: Building on Alzoubi and Mishra 

(2024) and Kulkov et al. (2024), this level emphasizes 

cultivating a data culture focused on quality, integrity, and 

accountability. Organizations are encouraged to enforce 

codes of conduct, collaborative practices, and 

standardized documentation to ensure sustainability goals 

are met. 

• AI Development Level: Inspired by Hung et al. (2018) 

and Thenemann et al. (2020), this level incorporates 

lifecycle assessment methodologies throughout AI 

development. Naeeni and Nouhi (2023) recommend 

employing energy-efficient algorithms and model 

compression techniques to minimize computational load. 
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• Policy and Governance Level: This level advocates for 

standardization and regulatory frameworks, drawing 

insights from the Artificial Intelligence Environmental 

Impacts Act of 2024 (Perucica and Andjelkovic, 2022). 

Stakeholder engagement across government, academia, 

and industries is promoted to ensure an integrated and 

policy-driven approach to AI sustainability (Thoennen et 

al., 2020). 

4. Cross-Sector Collaboration 

The methodology underscores the importance of cross-sector 

interactions involving governments, industries, and academic 

institutions to foster sustainable practices. 

• Knowledge Sharing: Case studies and reports by Van 

Wynsberghe (2021) and Yokoyama et al. (2023) 

demonstrate how partnerships facilitate knowledge 

exchange, harmonization of practices, and technology 

development. 

• Collaborative Gaps: Collaboration is particularly crucial 

in addressing the lack of lifecycle documentation and 

ensuring environmentally relevant aspects are 

comprehensively covered by all stakeholders. 

5. Data Collection and Synthesis 

This study synthesizes data from diverse sources, including: 

• Quantitative Measures: Data on energy consumption and 

carbon footprints from existing AI models (Strubell et al., 

2020; Goldman Sachs, 2024). 

• Organizational-Level Insights: Findings on organizational 

strategies and regulatory measures (Alzoubi & Mishra, 

2024; Prasad Agrawal, 2023). 

• Emerging Technologies: Research on innovative 

technologies designed to reduce energy usage across 

hardware and software (Hudaszek et al., 2023; Xiaoxi et 

al., 2020). 

The collected data is systematically analyzed to identify patterns, 

relationships, and actionable recommendations for the proposed 

sustainability framework. 

4.0 Proposed Solutions and Framework 

Achieving AI sustainability cannot rely solely on technical 

solutions; it must also be supported by organizational strategies and 

policy frameworks. This section outlines strategic approaches to 

address environmental challenges, including immediate hardware 

solutions, lifecycle optimization, and policy standardization. These 

solutions align with objectives such as efficiency, energy 

conservation, and cross-sector collaboration. 

1. Upgrade to Energy Efficiency Hardware 

Apple suggests that one of the most impactful ways to reduce AI's 

environmental footprint is by adopting energy-efficient hardware 

specifically designed for AI processing. Standard CPUs and GPUs 

are often inadequate for AI tasks, leading to significant energy 

consumption and reduced efficiency (Strubell et al., 2020; El-

Khattab & Fathy, 2023). Specialized hardware, such as NPUs 

(Neural Processing Units), offers a more sustainable solution. 

• Case Study of Kneron Inc.: Kneron Inc. demonstrates that 

AI-specific hardware can enhance energy efficiency 

without compromising performance. Integrating GPUs 

with NPUs can yield a 10-25% performance increase 

while reducing computational resource usage by 30% 

(Basharat, 2022). This mirrors earlier transitions where 

GPUs replaced CPUs for graphical tasks, showcasing the 

potential of purpose-built hardware (El-Khattab & Fathy, 

2023). 

• Model Compression: Techniques like model compression 

enable AI models to run efficiently on lightweight 

hardware while maintaining accuracy (Yokoyama et al., 

2023). This approach reduces the carbon footprint of both 

the training and inference phases of AI development. 

Adopting energy-efficient hardware and optimized algorithms can 

significantly reduce the environmental toll of AI systems during 

development and deployment. 

2. Holistic Lifecycle Management 

Sustainability in AI must span the entire lifecycle from inception and 

development to implementation and maintenance. Organizations 

need to cultivate environments that are both sustainable and 

productive. 

• Lifecycle Assessments (LCA): Tools such as LiSET and 

LCA enable early-stage evaluation of environmental 

impacts. These tools guide resource optimization, 

minimize waste, and identify key areas for improvement 

in production processes (Hung et al., 2018; Thenemann et 

al., 2020). However, traditional LCA approaches often 

overlook organizational decision-making and staff 

engagement, which are crucial for achieving long-term 

sustainability goals (Kulkov et al., 2024). 

• Data Culture and Integrity: Organizations must prioritize 

data integrity and quality assurance to prevent 

redundancies and improve efficiency. Proper 

documentation, adherence to standards, and a 

commitment to transparency create systems that are both 

efficient and environmentally friendly (Rohde et al., 

2024). 

Applying circular thinking and lifecycle assessments across all AI 

development phases ensures alignment with both environmental 

goals and operational efficiency. 

3. Policy and Regulatory Standardization 

The absence of coherent regulatory frameworks is a significant 

barrier to achieving sustainable AI. Without clear guidelines, 

organizations often prioritize performance metrics over 

environmental stewardship, leading to inconsistent practices across 

industries (Perucica & Andjelkovic, 2022). 

• Need for Unified Regulations: Policies such as the 

Artificial Intelligence Environmental Impacts Act of 2024 

have mandated voluntary reporting of environmental 

metrics related to AI usage. However, mandatory 

standards are essential to ensure widespread compliance 

and alignment with sustainability goals (Perucica & 

Andjelkovic, 2022). 
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• Cross-Sector Collaboration: Effective policy 

implementation requires cooperation between 

governments, academia, and industries. Partnerships with 

academic institutions can drive innovation in energy-

efficient algorithms, while government oversight can 

enforce compliance through mandatory carbon footprint 

declarations (Kulkov et al., 2024; Xiaoxi et al., 2020). 

Standardizing regulatory policies will enhance compatibility across 

sectors and foster collective progress towards an environmentally 

sustainable AI ecosystem. 

4. Intersectoral Cooperation for Accountability 

A siloed approach to AI development has hindered progress towards 

sustainability. Technological advancements are typically driven by 

private companies, while public institutions focus on application, 

and academic researchers handle theoretical advancements. 

Bridging these silos is critical for creating holistic sustainability 

strategies. 

• Sharing Tools and Research: Collaborative alliances 

facilitate the exchange of best practices, tools, and 

knowledge benchmarks. This prevents redundant efforts 

and accelerates the adoption of innovative solutions 

(Naeeni & Nouhi, 2023; Alzoubi & Mishra, 2024). 

• Joint Policy Development: Cooperative frameworks help 

develop shared guidelines that balance innovation with 

sustainability goals. Industry consortia, such as eco-chip 

initiatives, demonstrate how shared corporate 

responsibility can drive meaningful environmental 

outcomes (Thonemann et al., 2020; Hudaszek et al., 

2023). 

Cross-sectoral collaboration ensures that all stakeholders technology 

developers, regulators, and environmental organizations align their 

efforts towards a cohesive and globally recognized sustainability 

standard. 

Summary of Proposed Framework 

The proposed solutions emphasize a multi-tiered approach: 

1. Technical Level: 

• Succession of the use of energy-efficient hardware such as 

NPUs. 

• Application of model compression to cut down energy 

consumption. 

2. Organizational Level: 

• Promote the culture where data is accurate, complete and 

systematic. 

• Use tools such as LiSET that analyses a product’s life 

cycle and determine points that negatively affect the 

environment. 

3. Policy Level: 

• The final policy recommendations include: Support 

binding secondary rules, and mandatory reporting of 

carbon emissions. 

• Demonstrate and encourage interorganizational resource 

and knowledge exchange. 

When these solutions are incorporated, the sustainability of AI can 

be achieved to allow for its growth to be in a sustainable way. 

5.0 Results 

The analysis highlights key findings across energy efficiency, 

lifecycle integration, standardization deficiencies, and cross-

industry collaboration regarding the environmental sustainability of 

AI systems. These findings identify practical challenges associated 

with AI's environmental impact and propose viable technological 

and strategic solutions. 

1. Energy Efficiency through Specialized Hardware 

A major concern in AI systems is their energy consumption during 

the training and inference phases. Strubell et al. (2020) estimated 

that training a single NLP model produces 600,000 pounds of CO₂ 

emissions, equivalent to the lifetime emissions of five cars. This 

highlights the substantial carbon intensity associated with AI’s 

computational demands. 

Energy-efficient hardware has emerged as a key solution to 

address these challenges. One notable advancement is the 

development of reconfigurable Neural Processing Units (NPUs) by 

Kneron Inc., specifically optimized for AI tasks. These NPUs reduce 

computational power consumption by 30% while delivering a 10-

25% increase in performance compared to traditional GPUs and 

CPUs (Basharat, 2022; Hudaszek et al., 2023). This shift allows 

legacy hardware to focus on general computational throughput, 

improving overall system efficiency. 

The exponential growth in AI’s computational demands, 

with AI power expected to double every two months by 2024 

(Goldman Sachs Research), underscores the urgency for hardware 

advancements. Transitioning from generic hardware to AI-specific 

hardware architectures is critical for balancing energy consumption 

with high performance levels (El-Khattab & Fathy, 2023). This 

evolution mirrors previous paradigm shifts in computing, such as the 

adoption of GPUs for graphical processing. 

2. Approaches for Sustainable Integration of Lifecycle in AI 

Development 

Sustainability must be embedded throughout the AI lifecycle from 

development and deployment to maintenance and eventual 

decommissioning. Tools like Life Cycle Assessment (LCA) and 

Life Cycle Screening of Emerging Technologies (LiSET) are 

instrumental in identifying environmental impacts early in AI 

development (Hung et al., 2020; Thenemann et al., 2020). These 

frameworks enable better resource utilization, minimize waste, and 

optimize energy consumption throughout the AI lifecycle. 

However, adoption of these frameworks remains limited. 

Many organizations neglect lifecycle sustainability principles, 

resulting in inefficient processes and heightened energy usage. 

Rohde et al. (2024) emphasize the need to foster organizational 

cultures centered on data quality and integrity. Sustainability must 

become an intrinsic part of innovation rather than an afterthought.  

Incorporating cyclical design loops, minimizing redundant 

processes, and reducing energy use during both training and 

inference phases can significantly enhance lifecycle sustainability 

(Kulkov et al., 2024). Organizations that successfully apply these 

frameworks demonstrate stronger alignment between business 

operations and environmental objectives. Well-documented 

workflows, optimized algorithms, and streamlined operations 
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contribute to minimizing energy consumption without 

compromising performance. 

3. Standardization and Policy Gaps  

The absence of standardized regulatory frameworks poses a 

significant challenge to sustainable AI development. Current 

environmental policies are often fragmented and fail to offer tailor-

made solutions for AI technologies (Perucica & Andjelkovic, 2022). 

This lack of uniform regulations results in inconsistencies across 

industries, where some organizations prioritize performance metrics 

over energy efficiency. 

The Artificial Intelligence Environmental Impacts Act of 

2024 seeks to address these shortcomings by introducing voluntary 

reporting systems for AI-related environmental impacts. However, 

these measures lack enforcement mechanisms to drive widespread 

adoption. Yokoyama et al. (2023) advocate for mandatory reporting 

requirements aligned with TCFD (Task Force on Climate-related 

Financial Disclosures) standards to create collective accountability 

among companies. 

The lack of cross-industry standardization also hinders 

proactive collaboration. Regulatory gaps prevent industries, 

academia, and public institutions from sharing resources, 

knowledge, and best practices effectively. Establishing 

comprehensive regulatory policies will ensure that AI innovation 

aligns with environmental sustainability objectives across all 

sectors. 

4. Learning from other sectors and adopting best practice in a 

more polarized system 

Technology leaders, academic institutions, and policymakers must 

engage in mutual cooperation to create effective sustainability 

strategies. 

• Academic Contributions: Partnerships with academic 

institutions have driven advancements in energy-efficient 

algorithms and hardware technologies. 

• Policy Alignment: Collaboration with standard-setting 

agencies ensures that environmental policies address the 

specific needs of AI systems (Naeeni & Nouhi, 2023; 

Alzoubi & Mishra, 2024). 

Organizations engaged in cross-sector initiatives report higher 

success rates in implementing sustainable practices. Industry 

consortia facilitate the sharing of tools, research insights, and 

benchmarks, accelerating the adoption of green hardware and 

software solutions (El-Khattab & Fathy, 2023). 

Intentional frameworks that promote accountability and 

transparency, such as emission reporting guidelines and usage 

optimization frameworks, further support sustainability goals. 

Partnerships between governments, environmental organizations, 

and academic researchers can ensure that technological 

advancements align with global sustainability initiatives. 

6.0 Discussion 

The findings of this study highlight the complex interplay of factors 

influencing the sustainability of artificial intelligence (AI). While AI 

offers transformative opportunities across multiple fields, its 

environmental footprint during development and deployment has 

become a pressing global concern. This section synthesizes the key 

findings, emphasizing the systemic changes required in hardware 

adoption, organizational culture, and regulatory frameworks to 

achieve sustainable AI. 

6.1 Increase Use of Energy Efficient Hardware 

A key insight from this study reveals that AI systems can become 

significantly greener through energy-efficient hardware solutions. 

Technologies such as Neural Processing Units (NPUs), like those 

developed by Kneron Inc., demonstrate how specialized hardware 

can optimize AI performance. These NPUs reduce power 

consumption by 30% while achieving a 10-25% performance 

increase compared to traditional CPUs and GPUs (Basharat, 2022). 

However, despite these advancements, widespread adoption 

remains limited due to high transition costs and organizational 

inertia (El-Khattab & Fathy, 2023). Previous technological shifts 

such as the transition from CPUs to GPUs for graphical processing 

illustrate that such adoption is not only possible but necessary. For 

AI to experience similar momentum, industry stakeholders must 

prioritize investments in AI-specific hardware and align efforts 

across sectors (Hung et al., 2020).  

Additionally, techniques like model compression and 

algorithm optimization must complement hardware efficiency, 

ensuring that AI systems remain both high-performing and 

environmentally conscious. 

6.2 Integration of Sustainability into the AI Lifecycle 

Sustainability must be embedded throughout the AI lifecycle, from 

development and deployment to maintenance and eventual 

decommissioning. Frameworks such as Life Cycle Assessment 

(LCA) and Life Cycle Screening of Emerging Technologies 

(LiSET) offer valuable tools for evaluating environmental impacts 

at early development stages (Hung et al., 2020; Thenemann et al., 

2020).  

However, adoption of these frameworks remains 

inconsistent and limited to technical aspects, often excluding 

organizational and cultural factors. Organizations prioritizing 

scalability over sustainability tend to amplify resource consumption 

and environmental strain (Naeeni & Nouhi, 2023), which escalate 

energy and resource consumption (Naeeni & Nouhi, 2023). 

Closing these gaps requires integrating sustainability into 

organizational culture and processes. This involves: 

• Maintaining data integrity and quality standards. 

• Enhancing documentation processes. 

• Aligning environmental goals with short-term business 

objectives. 

By fostering an organizational culture that values sustainability, 

companies can create prevention-based design strategies that align 

AI development with long-term ecological resilience (Kulkov et al., 

2024; Boons, 2018; Steidel-Moreno et al., 2020). 

6.3 Intersectoral Work and Cooperation 

The notion of reaching sustainability in AI is therefore not an issue 

that can posed and solved at individual organization level; it will 

have to be an enterprise of the different sectors. Research and 

innovation in sustainable AI demand the collaboration of technology 

stakeholders, knowledge institutions, and government institutions. 

For instance, the universities can work on the creation of new energy 

efficient algorithms, whereas the industry consortia may help to 

share the tools and expertise (Xiaoxi et al., 2020). In addition, 
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partnerships with environmental organizations can help to achieve 

further AI development meeting the goals of environmental 

responsibility. 

They also play a key role in addressing the economic 

challenges associated with practicing sustainable development. 

Collaboration has the potential to reduce costs and accelerate the 

transition to energy-efficient technologies in industries and 

buildings. Furthermore, there is potential for collaboration to 

advocate for standardized policies that promote sustainability as a 

collective social responsibility rather than placing the burden solely 

on individual accountability. 

7.0 Conclusion 

The rapid proliferation of artificial intelligence (AI) technologies 

presents a paradox: while AI drives innovation and societal progress, 

it simultaneously poses a significant threat to environmental 

sustainability. This duality underscores the necessity of embedding 

environmental responsibility at every stage of AI development and 

deployment. Achieving sustainable AI is not a challenge that can be 

solved through technological advancements alone it requires a 

multifaceted approach encompassing technological innovation, 

organizational transformation, and robust policy frameworks. 

7.1 Addressing Energy Consumption 

One of the central challenges remains the high energy consumption 

associated with AI systems, particularly during training and 

inference phases. Strubell et al. (2020) highlight the immense carbon 

footprint generated by training large AI models, a concern 

exacerbated by rising computational demands. Transitioning to 

energy-efficient hardware such as Neural Processing Units (NPUs) 

has proven effective in addressing these concerns. Companies like 

Kneron Inc. demonstrate how NPUs can reduce power consumption 

by 30% while simultaneously increasing performance by 10-25% 

(Hung et al., 2018; Basharat, 2022). These advancements mirror 

previous paradigm shifts in computing, such as the adoption of 

Graphics Processing Units (GPUs) for specialized tasks. To scale 

these improvements, industry stakeholders must prioritize 

investments in AI-specific hardware, complemented by model 

compression techniques and algorithm optimization to maximize 

efficiency and minimize energy waste. 

7.2 Lifecycle Integration and Organizational Culture 

Sustainability must be embedded across the entire AI lifecycle, from 

design and development to deployment and decommissioning. Tools 

such as Life Cycle Assessment (LCA) and Life Cycle Screening of 

Emerging Technologies (LiSET) provide frameworks for early-

stage evaluation of environmental impacts (Thenemann et al., 2020; 

Hung et al., 2018). 

However, these methodologies often fail to address 

organizational and cultural dimensions, limiting their overall 

impact. As Kulkov et al. (2024) suggest, corporate sustainability 

practices must focus on: 

• Data integrity and accuracy. 

• Efficient resource management across supply chains. 

• Product returnability, reusability, and recyclability. 

Building an organizational culture that values sustainability 

alongside productivity ensures that AI systems align with both 

environmental objectives and business goals. 

7.3 Addressing Policy and Regulation Gaps 

A significant barrier to sustainable AI lies in the lack of cohesive 

regulations and standardized policies. Current environmental 

policies are fragmented and inadequate, failing to account for the 

unique environmental implications of AI technologies (Perucica & 

Andjelkovic, 2022). The Artificial Intelligence Environmental 

Impacts Act of 2024 offers a promising foundation, advocating for 

voluntary reporting and environmental accountability. However, its 

impact remains limited without mandatory enforcement 

mechanisms. Yokoyama et al. (2023) argue for the adoption of 

mandatory carbon emission disclosures and the creation of 

standardized reporting frameworks to foster collective 

accountability. Additionally, policy standardization must address 

energy consumption benchmarks, data exchange practices, and 

lifecycle assessments, ensuring alignment across industries and 

reducing regulatory disparities (Alzoubi & Mishra, 2024). 

7.4 Intersectoral Collaboration for Sustainability  

The path to sustainable AI cannot be achieved by individual 

organizations in isolation it demands cross-sector collaboration 

involving technology providers, governments, academia, and 

environmental organizations. 

• Research Contributions: Academic institutions can 

pioneer energy-efficient AI algorithms and innovative 

sustainability solutions (Xiaoxi et al., 2020). 

• Industry Consortia: Collaborative industry networks 

facilitate tool-sharing, knowledge exchange, and the 

adoption of green hardware and software solutions (El-

Khattab & Fathy, 2023). 

• Environmental Advocacy: Partnerships with 

environmental organizations ensure that sustainability 

goals remain central to AI advancements. 

Intersectoral cooperation streamlines resources, reduces costs, and 

accelerates the adoption of sustainability-focused AI practices. 

A Call to Action 

Achieving sustainable AI requires a systemic approach that engages 

all stakeholders in the AI value chain. This includes: 

• Adopting Energy-Efficient Technologies: Prioritizing 

specialized AI hardware and optimizing algorithms to 

minimize energy use. 

• Embedding Sustainability into Organizational 

Practices: Cultivating a culture of sustainability 

awareness, maintaining lifecycle accountability, and 

aligning business goals with environmental responsibility. 

• Strengthening Policy and Regulation: Implementing 

standardized policies and enforcement mechanisms to 

ensure transparency, accountability, and collective action 

across sectors. 

By integrating these approaches, AI can evolve as an enabler of 

sustainable development, balancing innovation with environmental 

stewardship. 

The alignment of energy efficiency, lifecycle management, 

regulatory robustness, and cross-sector collaboration will pave the 

way for a sustainable AI ecosystem. As emphasized by Alzoubi and 

Mishra (2024), achieving this vision requires collective commitment 
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from governments, industries, academia, and civil society 

worldwide. 
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