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Abstract 
The intersection of computer vision and natural language processing has led to the rapid development of vision-language models capable of 

performing complex multimodal tasks such as image captioning, visual question answering (VQA), and image-text retrieval. In this context, 

hybrid architectures that combine Convolutional Neural Networks (CNNs) for visual feature extraction with Transformer-based encoders for 

multimodal fusion have become a dominant paradigm. However, with the emergence of fully Transformer-based models, particularly those 

leveraging Vision Transformers (ViT) and contrastive learning frameworks, the performance, efficiency, and scalability of hybrid models are 

increasingly under scrutiny. 

This research presents a comprehensive benchmark study comparing hybrid CNN-Transformer architectures with CNN-only and 

Transformer-only models across three core vision-language tasks: image captioning (MS COCO), visual question answering (VQAv2), and 

image-text retrieval (Flickr30k). We evaluate leading models such as ViLBERT, VisualBERT, OSCAR, VinVL, BLIP, CLIP, METER, and 

ViLT, analyzing their performance using widely adopted metrics including BLEU, METEOR, CIDEr, Recall@K, and VQA accuracy. In 

addition to performance metrics, we assess models in terms of computational efficiency, inference time, parameter count, and real-time 

deployment potential. 

The experimental results reveal that while hybrid CNN-Transformer models have historically achieved state-of-the-art accuracy on 

vision-language benchmarks by benefiting from explicit object-level representations and multimodal fusion, the gap is narrowing. Recent 

Transformer-only models like METER and BLIP not only match or exceed hybrid models in accuracy but also significantly outperform them in 

inference speed, often by a factor of 5 to 60 depending on hardware configurations. Additionally, dual-encoder models such as CLIP 

demonstrate remarkable zero-shot capabilities and efficient retrieval performance without cross-attention fusion. 

This study underscores a critical shift in vision-language modeling, highlighting the movement from complex hybrid architectures to streamlined, 

scalable Transformer-based solutions. The results provide valuable insights into model design trade-offs, emphasizing the importance of 

architectural efficiency, pretraining strategies, and deployment constraints. Finally, the paper highlights open research challenges and future 

directions, including the development of lightweight vision-language models for edge devices, improved multimodal alignment techniques, and 

broader generalization across modalities and domains. 
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1. Introduction 
1.1. Background on Vision-Language Integration 

In the pursuit of artificial general intelligence, the ability to process and reason across multiple modalities particularly vision and language has 

emerged as a cornerstone challenge. Human cognition naturally integrates visual perception and linguistic understanding, enabling individuals to 

describe scenes, infer intent, and answer questions based on images. Replicating this ability in machines has given rise to vision-language tasks 

such as image captioning, visual question answering (VQA), image-text retrieval, and more recently, multimodal dialogue systems and 

grounded instruction following. The integration of vision and language lies at the heart of numerous real-world applications. For example, 

assistive technologies rely on image captioning to describe environments for visually impaired users. E-commerce platforms leverage visual 

search to map textual queries to product images. Autonomous systems must understand both sensor inputs and verbal instructions to operate in 

complex environments. Consequently, the field of multimodal learning has gained significant attention in the machine learning community, 

spurred by advances in deep neural architectures, large-scale datasets, and powerful computational resources. 

Initially, vision-language models were built using modality-specific backbones: visual features were extracted using Convolutional Neural 

Networks (CNNs), while language modeling and generation were handled by Recurrent Neural Networks (RNNs) such as LSTMs and GRUs. 

These modalities were often combined through late fusion strategies—concatenating feature vectors or using fixed attention weights. While 

these approaches laid foundational work and achieved modest success, they exhibited a number of limitations, including restricted 

representational capacity, limited interaction between modalities, and a heavy reliance on handcrafted fusion mechanisms. 

The advent of attention mechanisms and the introduction of Transformers in natural language processing (NLP) fundamentally reshaped how 

multimodal integration is approached. Transformers provided a mechanism for learning complex, long-range dependencies through 
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self-attention, enabling deeper and more flexible interactions across input elements. These strengths translated effectively to multimodal learning, 

where researchers began exploring the use of Transformers for fusing visual and textual information. The field rapidly evolved from 

modality-specific architectures to shared, unified models capable of learning joint multimodal embeddings. 

As a result, vision-language modeling has become one of the most dynamic and innovative frontiers in AI research. The performance of 

state-of-the-art systems on benchmarks such as MS-COCO, VQAv2, and Flickr30k has improved significantly. However, a critical architectural 

question remains: what is the optimal approach to integrating vision and language—should models rely on traditional CNN-based visual 

encoders, embrace fully Transformer-based architectures, or adopt a hybrid of both? 

 

1.2. Emergence of CNN-Transformer Hybrids 

In response to the limited capacity of early CNN+RNN models, researchers developed hybrid CNN-Transformer architectures  that combine 

the perceptual strengths of CNNs with the relational reasoning power of Transformers. These hybrid models represent a transitional innovation 

bridging the gap between traditional two-stage pipelines and modern unified models. 

The foundational idea behind hybrid models is straightforward yet powerful: leverage CNNs especially those pre-trained on large-scale image 

classification or object detection tasks—to extract semantically meaningful image features, and then use Transformer encoders to process 

and fuse these features with textual tokens. Unlike RNNs, Transformers can process visual and textual inputs in parallel and establish global 

context across all tokens through multi-head self-attention mechanisms. 

 

1.3. Early exemplars of this architecture include: 

 ViLBERT (Lu et al., 2019), which introduced a two-stream model where image region features (typically obtained from a Faster 

R-CNN) and textual tokens are processed in parallel and then fused using co-attentional Transformer layers. 

 VisualBERT (Li et al., 2019), which proposed a single-stream model that concatenated region features and word embeddings into 

one sequence for unified Transformer processing. 

 LXMERT, UNITER, and OSCAR, which iterated on these foundations by refining pretraining objectives (e.g., masked region 

prediction, image-text matching) and scaling to larger datasets. 

These hybrid models delivered remarkable performance improvements across a range of tasks: 

 In image captioning, they generated captions that were more detailed, context-aware, and semantically grounded. 

 In VQA, they demonstrated improved reasoning and alignment between visual cues and language queries. 

 In image-text retrieval, they achieved higher recall by learning more robust joint embeddings. 

Crucially, hybrid architectures demonstrated the importance of cross-modal pretraining, an idea borrowed from BERT-style models in NLP. 

By pretraining on large corpora of image-caption pairs, these models learned task-agnostic multimodal representations that could be 

fine-tuned for downstream tasks, resulting in better generalization and faster convergence. 

At their peak, hybrid CNN-Transformer models represented the state-of-the-art across nearly all vision-language benchmarks. Their success 

proved that modular designs using specialized CNNs for perception and Transformers for reasoning could be highly effective. However, as the 

field matured, several limitations of hybrid models began to surface. 

 

1.4. Limitations of Traditional Models 
Despite their achievements, traditional vision-language models including both early CNN+RNN systems and hybrid CNN-Transformer 

architectures suffer from inherent limitations that restrict their scalability, efficiency, and generalization capacity. 

Architectural Complexity and Inflexibility: Hybrid models often require external object detectors, such as Faster R-CNN, to generate region 

proposals for visual inputs. These detectors are trained separately and frozen during downstream training, introducing an architectural 

bottleneck. The need to integrate multiple networks with different training regimes complicates deployment and model maintenance. 

 High Inference Latency and Resource Consumption: The two-stage processing pipeline of hybrid models—first extracting visual 

features, then fusing them with text results in significant computational overhead, especially for real-time applications. For 

instance, running an object detector per image can take several hundred milliseconds, even on powerful GPUs. This makes such 

models unsuitable for low-latency or edge computing scenarios, such as mobile devices, robotics, or autonomous vehicles. 

 Limited Scalability for Multimodal Extension: As the demand for models capable of handling multiple modalities (e.g., video, 

audio, depth) grows, hybrid models become increasingly difficult to scale. Integrating additional perceptual modules alongside the 

existing CNN-Transformer fusion framework introduces further complexity, hampering the development of general-purpose 

multimodal systems. 

 Separation of Modalities during Early Processing: Although hybrid models achieve deep fusion through Transformers, their 

reliance on precomputed CNN features restricts end-to-end gradient flow. This separation can result in suboptimal representation 

learning, especially for rare or task-specific concepts that require joint optimization across vision and language. 

 Limited Interpretability and Adaptability: Some hybrid models rely on region proposals that are fixed and semantically coarse. 

If the object detector fails to identify a relevant visual element (e.g., a rare object or fine-grained attribute), the entire model's 

performance can degrade. Moreover, fine-tuning these models for new domains often requires extensive retraining or architectural 

reconfiguration. 

These limitations have sparked growing interest in fully Transformer-based architectures that abandon CNNs altogether and embrace 

end-to-end learning pipelines capable of ingesting raw image patches directly into self-attention layers. However, it remains an open question 

whether these newer models can match or exceed the performance of hybrid models, especially in tasks requiring fine-grained visual 

understanding. 

 

1.5. Motivation and Research Gap 

Although the field has witnessed significant innovation in vision-language modeling, there remains a lack of comprehensive benchmarking 

studies that directly compare hybrid CNN-Transformer architectures with both CNN-only baselines and fully Transformer-based models 

across a range of tasks. Most existing evaluations are: 

Narrow in scope, focusing on a single task such as VQA or image captioning, which limits our understanding of a model’s generalization 

capabilities. 

Inconsistent in experimental setup, with varying datasets, metrics, and evaluation protocols, making comparisons difficult. 

Focused primarily on accuracy, often ignoring critical factors such as model size, training cost, inference speed, and hardware 

requirements all of which are essential for practical deployment. 



Emerging Science Research (ESR) 

https://emergingpub.com/index.php/sr                                                                                  38 

Furthermore, the literature lacks a unified framework that quantifies the efficiency-accuracy trade-offs inherent in different architectures. For 

instance, a model may achieve state-of-the-art accuracy but be unsuitable for deployment due to latency constraints or memory limitations. 

Conversely, a lighter model may offer adequate accuracy with excellent real-time performance, making it more practical for certain applications. 

This research aims to fill this gap by conducting a systematic and holistic benchmark of vision-language models spanning three architectural 

categories: CNN-only, hybrid CNN-Transformer, and Transformer-only. We assess each model’s performance across multiple tasks and report 

on both quantitative metrics (e.g., BLEU, CIDEr, VQA accuracy) and computational characteristics (e.g., inference time, parameter count, 

memory usage). 

 

1.6. Objectives and Key Contributions 

To address the research gap outlined above, this paper sets forth the following objectives: 

To evaluate the performance of hybrid CNN-Transformer architectures against CNN-only and Transformer-only models on core 

vision-language tasks including image captioning, visual question answering, and image-text retrieval, using standard datasets and 

evaluation metrics. 

 To analyze architectural trade-offs by comparing models in terms of: 

 Accuracy on benchmark datasets (COCO, VQAv2, Flickr30k) 

 Inference latency and throughput 

 Model size and memory requirements 

 Pretraining corpus and fine-tuning performance 

 To identify deployment considerations, including which models are most suited for: 

 Edge computing environments (e.g., smartphones, drones) 

 Real-time applications (e.g., robotics, assistive AI) 

 Large-scale data pipelines (e.g., recommendation systems, media indexing) 

 To provide qualitative insights into model behavior by analyzing sample outputs, such as: 

 Caption richness and precision 

 VQA answer correctness and reasoning 

 Retrieval relevance and diversity 

 To propose future research directions in the design of scalable, interpretable, and efficient multimodal systems. These include 

exploring: 

 Unified encoder-decoder architectures 

 Contrastive and generative multitask learning 

 Low-resource and zero-shot adaptation 

Key contributions of this work include: 

A unified benchmark framework that evaluates leading vision-language models across tasks using a consistent setup. 

 Extensive empirical analysis of architectural trends, with a focus on performance, efficiency, and deployment readiness. 

 The inclusion of visualizations, tables, and performance graphs to aid interpretability and comparison. 

 A synthesis of state-of-the-art research that contextualizes the evolution from traditional models to modern Transformers. 

Providing a structured and in-depth comparison of modern vision-language models, we aim to support both academic research and industrial 

deployment, and to guide future innovations toward more effective and efficient multimodal AI systems. 

 

2.  Literature Review 
2.1. Evolution of Vision-Language Models 

The integration of visual and linguistic modalities has become a cornerstone in advancing artificial intelligence systems toward human-like 

perception and reasoning. The field of vision-language modeling has evolved significantly over the past decade, transitioning from simple, 

task-specific pipelines to complex, end-to-end pre-trained architectures capable of generalizing across multiple tasks. Initially, efforts focused on 

combining Convolutional Neural Networks (CNNs) for image representation with Recurrent Neural Networks (RNNs) or Long 

Short-Term Memory (LSTM) networks for language generation or understanding. These models operated in a modular fashion, with each 

modality processed independently and later fused at a shallow layer. However, these approaches lacked the capacity for deep cross-modal 

interactions, limiting their effectiveness in tasks requiring fine-grained alignment between image regions and textual semantics. 

With the rise of attention mechanisms, particularly in the form of Transformers, researchers began exploring more unified models capable of 

jointly modeling visual and textual inputs. The introduction of BERT in the natural language domain and Vision Transformers (ViTs) in 

computer vision opened new avenues for vision-language integration, leading to the development of hybrid CNN-Transformer architectures. 

These models leveraged region-based CNN features alongside powerful transformer-based cross-modal fusion layers, achieving state-of-the-art 

results in tasks such as image captioning, visual question answering (VQA), and image-text retrieval. 

More recently, the field has witnessed the emergence of fully Transformer-based models, which eschew traditional CNN backbones in favor 

of patch-based or hierarchical vision transformers. These models, such as ViLT, METER, and BLIP, demonstrate that explicit object-level 

region proposals may not be necessary for high performance, especially when trained on large-scale image-text datasets. This shift reflects a 

broader trend toward simpler, end-to-end trainable architectures that are more efficient and better suited for deployment in real-time or 

resource-constrained environments. 

 

2.2. Image Captioning 

Image captioning is the task of generating natural language descriptions for visual inputs, typically images. It requires models to not only 

recognize objects and scenes but also to understand their relationships and describe them coherently. The early milestones in image captioning 

were dominated by encoder-decoder frameworks, where a CNN encoded the visual content into a feature vector, and an RNN, usually an LSTM, 

decoded this vector into a sentence. 

The seminal Show and Tell model by Vinyals et al. (2015) introduced the first end-to-end trainable image captioning model. It used the 

Inception CNN to extract global image features and an LSTM to generate captions, achieving a BLEU-4 score of 27.7 on the MS COCO dataset. 

This model demonstrated the viability of mapping from image pixels directly to sequences of words. 

Soon after, Show, Attend and Tell (Xu et al., 2015) incorporated a visual attention mechanism, allowing the model to focus on different parts of 

the image while generating each word. This significantly improved the quality and interpretability of generated captions, especially in cases 

involving multiple objects or complex scenes. 
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The introduction of Bottom-Up and Top-Down Attention by Anderson et al. (2018) marked a major advancement. This model utilized Faster 

R-CNN to generate region-level features, which were then processed by a top-down attention LSTM. This allowed for object-level grounding of 

captions and pushed CIDEr scores above 120, establishing a new benchmark. 

With the adoption of Transformer-based architectures, image captioning models began to leverage large-scale pre-training. OSCAR introduced 

object tags into the captioning pipeline, serving as anchors to bridge vision and language. VinVL extended this idea by improving the object 

detector, leading to richer region features and pushing CIDEr scores above 130. More recently, BLIP employed a bootstrapped dataset and a 

mixture of encoder-decoder Transformers, achieving state-of-the-art results with CIDEr scores approaching 137. These developments indicate 

that the evolution from CNN-RNN to Transformer-based architectures has dramatically enhanced the expressiveness, fluency, and accuracy of 

image captioning models. 

 

2.3. Visual Question Answering (VQA) 

VQA is a challenging task that combines image understanding with natural language comprehension and reasoning. Given an image and a 

natural language question, the model must generate a correct answer, which can be a word, phrase, or sentence. The task gained prominence with 

the introduction of datasets such as VQA v1.0 and VQAv2.0, which contain open-ended questions requiring visual reasoning. 

Initial VQA systems used CNNs (e.g., VGGNet or ResNet) to extract global features and LSTMs to encode the question. These features were 

fused using simple concatenation or bilinear interactions, followed by a classifier. However, such models often exploited dataset biases and 

lacked the ability to focus on relevant image regions. 

Attention-based models such as the Stacked Attention Network (SAN) and Bilinear Attention Network (BAN) introduced more 

sophisticated fusion mechanisms. The Bottom-Up and Top-Down Attention model again played a critical role here, using object-level 

attention to guide the model toward relevant image regions based on the question context. This pushed the accuracy on VQAv2 beyond 70%, a 

significant leap at the time. 

The shift to transformer-based multimodal pre-training ushered in a new era for VQA. Models like ViLBERT and VisualBERT employed 

BERT-style architectures, using pre-trained CNN region features and textual inputs to perform co-attention or self-attention fusion. LXMERT 

and UNITER extended these models with more complex training objectives and larger datasets, achieving accuracies up to 73-74% on VQAv2. 

OSCAR and VinVL further improved performance by enriching visual inputs with object tags and better detectors. These models reached VQA 

test-standard accuracies of over 76%, with BLIP recently pushing this to above 80%. Meanwhile, Transformer-only models like ViLT and 

METER have shown that explicit region features are not necessary if sufficient data and training strategies are applied. METER, for example, 

achieves 77-80% accuracy with significantly lower inference costs, marking a major step toward efficient, scalable VQA systems. 

 

2.4. Vision-Language Retrieval 

Image-text retrieval is a bidirectional task where the model must retrieve relevant captions for a given image (image-to-text) or retrieve relevant 

images for a given caption (text-to-image). This task tests the model’s ability to align visual and textual semantics in a shared embedding space. 

Traditional models such as VSE++ and SCAN used CNN-based visual encoders and RNN-based text encoders, optimized with a contrastive loss. 

While effective, these models required manually curated features and struggled with complex semantic relations. 

The introduction of Transformer-based architectures such as UNITER, OSCAR, and VinVL led to significant improvements in retrieval 

performance. These models use region-level features and learn deep cross-modal interactions through pre-training on large-scale datasets. 

UNITER, for example, introduced optimal transport objectives to align word and region embeddings more precisely, resulting in improved 

retrieval accuracy. 

ALBEF and BLIP represent the current state-of-the-art in image-text retrieval. They combine contrastive learning with cross-modal 

Transformers, achieving Recall @1 scores exceeding 85% on Flickr30k. These models benefit from both dual-encoder and fusion-based 

architectures, offering a balance between efficiency and performance. 

Meanwhile, CLIP, a dual-encoder model trained on 400 million image-text pairs, demonstrates that large-scale contrastive learning alone can 

achieve impressive zero-shot retrieval performance. Even without fine-tuning, CLIP achieves over 88% Recall@1 on standard benchmarks, 

highlighting the potential of scale and simple training objectives. 

 

2.5. CNN-Only and RNN-Based Architectures 

The earliest vision-language models were built upon CNNs for image encoding and RNNs for language decoding or classification. These 

models laid the foundation for many multimodal tasks but were limited by shallow fusion and lack of flexibility. 

Show and Tell (2015): Combined an Inception CNN and LSTM, pioneering end-to-end trainable captioning. 

Show, Attend and Tell (2015): Introduced soft attention over CNN features, improving descriptive accuracy. 

Stacked Attention Networks (2016): Applied question-guided attention in VQA, enabling deeper reasoning. 

BUTD (2018): Introduced object-based attention using region proposals, setting new benchmarks for both captioning and VQA. 

While these models achieved impressive results for their time, they suffered from several limitations: 

 Modality fusion was shallow (often a single layer). 

 Cross-modal interactions were unidirectional. 

 Training was task-specific and data-hungry. 

 Inference was slow due to sequential LSTM decoding and heavy CNNs. 

These shortcomings motivated the transition to transformer-based architectures that could offer better cross-modal reasoning and pre-training 

generalization. 

2.6. Transformer-Based Vision-Language Models 

Transformers offer the advantage of multi-head self-attention, allowing models to simultaneously attend to all parts of an input sequence. 

When adapted for multimodal inputs, this mechanism enables deep bidirectional reasoning between image and text. 

ViLBERT (2019): Two-stream architecture with co-attention layers. 

VisualBERT (2019): Single-stream model embedding image and text tokens into a unified sequence. 

UNITER (2020): Enhanced alignment with optimal transport objectives. 

OSCAR (2020): Injected object tags into the input, improving semantic alignment. 

VinVL (2021): Improved the object detector, significantly boosting performance. 

BLIP (2022): Combined bootstrapped dataset filtering with encoder-decoder Transformers, achieving SOTA results across tasks. 

These models demonstrated that pre-training on large image-text corpora with tasks like masked language modeling, image-text matching, 

and object classification leads to powerful joint representations. However, they still rely on external region detectors, making them 

computationally expensive and less flexible for real-time deployment. 
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2.7. Hybrid CNN-Transformer Models 

Hybrid models combine the strengths of CNNs (especially object detection) with Transformers. They typically use a Faster R-CNN or ResNet 

backbone to extract region-level features, which are then fused with text using a Transformer-based module. 

Key models include: 

ViLBERT: Introduced co-attention between visual and textual streams. 

VisualBERT: Simplified single-stream approach with concatenated embeddings. 

OSCAR: Introduced object tags to align vision and language. 

VinVL: Advanced object detector to produce higher-quality region features. 

BLIP: Unified vision-language pre-training with bootstrapped captions and encoder-decoder design. 

These models achieve state-of-the-art accuracy on captioning, VQA, and retrieval but suffer from slow inference due to reliance on external 

detectors and large Transformer stacks. 

Transformer-Only Models 

Recent models have demonstrated that pure Transformers can handle both vision and language modalities end-to-end without CNNs: 

 ViLT: Encodes image patches directly, eliminating region features. Achieves VQA accuracy comparable to hybrid models with 30x 

speedup in inference. 

 METER: Benchmarks different fusion and pre-training strategies, showing that careful model design can match or exceed hybrids. 

 CLIP: Trains separate image and text encoders using contrastive learning. Excels at retrieval and zero-shot tasks. 

 ALBEF and BLIP: Use a combination of contrastive pre-training and fusion Transformers, bridging dual-encoder and cross-modal 

models. 

Transformer-only models offer several advantages: 

 Simpler architecture (no external object detector). 

 Lower inference time and memory footprint. 

 Better scalability and transferability across tasks. 

 

These models are now reaching or exceeding hybrid model performance on major benchmarks, signaling a shift in architectural preference. 

2.8 Summary and Research Positioning 

The evolution of vision-language models reflects a broader trend in AI: moving from hand-engineered features and modular architectures to 

end-to-end, pre-trained, and scalable systems. While hybrid CNN-Transformer models have led the field in accuracy, especially on 

complex tasks like VQA and captioning, they come at the cost of computational complexity, two-stage processing, and slow inference speeds. 

Transformer-only models, empowered by large-scale pre-training and optimized architectures, are rapidly closing the accuracy gap while 

offering superior efficiency and real-time applicability. The availability of models like CLIP, METER, and BLIP showcases how thoughtful 

model design and data strategy can produce general-purpose vision-language systems that are both powerful and deployable. 

 

This study situates itself at this pivotal moment in the field. By providing a unified benchmark comparing CNN-only, hybrid 

CNN-Transformer, and Transformer-only architectures across multiple tasks and datasets, it offers insights into: 

 Performance trade-offs 

 Architectural complexity 

 Inference efficiency 

 Suitability for real-world deployment 
Through this lens, the paper contributes to the ongoing discourse on building scalable, interpretable, and efficient vision-language models, 

guiding future research toward the next generation of multimodal AI. 

 

3. Methodology 
3.1. Benchmark Design and Scope 
This benchmark study is designed to evaluate and compare CNN-onlyN Hybrid CNN-Transformer, and Transformer-onl architectures on 

three corevision-language task: 

 Image Captioning: generating natural language descriptions of images. 

 Visual Question Answering (VQA) : answering natural language questions about images. 

 Image-Text Retrieval: retrieving the correct image (or caption) based on a cross-modal query. 

The enchmark covers models across multiple generations and design paradigms, including traditional RNN-based architectures, 

attention-based CNN-RNN hybrids, and modern transformer-based systems with and without region-level object features. 

The scope includes: 

 Empirical evaluation using standard public datasets (COCO, VQAv2, and Flickr30k). 

 Quantitative comparisons using task-specific metrics. 

 Efficiency analysis (latency, inference time). 

 Model complexity assessment, including parameter count and deployment considerations. 

 

3.2. Description of Selected Models 
The models selected represent the state-of-the-art and foundational architectures across three main categories: 

 CNN-only / RNN-based Baselines 
 Show and Tell (NIC): A basic CNN-LSTM image captioning model using GoogleNet or Inception-v3. 

 Up-Down Attention: A dual-attention model using Faster R-CNN object proposals and LSTM decoders. 

 Hybrid CNN-Transformer Models 

 ViLBERT: Two-stream model with separate image and text transformers linked via co-attention. 

 VisualBERT: Single-stream model combining image regions and text in a unified transformer. 

 UNITER, LXMERT: Pre-trained models using multi-task learning with region-based visual features. 

 OSCAR, VinVL: Hybrid models using object tags and high-quality detector backbones (e.g., ResNeXt-152). 

 BLIP, ALBEF: Advanced models with image-text contrastive alignment and cross-modal fusion. 

 Transformer-only Models 

 ViLT : Patch-based unified transformer without any CNN backbone. 

 METER: A robust transformer-only pipeline with vision-language pretraining. 

 CLIP: Dual-encoder contrastive model trained on 400M image-text pairs (used for retrieval). 
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 Each model is evaluated both in terms of performance on each vision-language task and in terms of computational 

efficiency. 

 

3.3. Datasets 

The benchmark utilizes the most widely accepted datasets for evaluating vision-language models: 

 MS COCO Captions 

 Contains 123,287 images. 

 Each image is annotated with 5 captions. 

 Standard Karpathy split: 113K train, 5K validation, 5K test. 

 Used for image captioning evaluation. 

 VQAv2 (Visual Question Answering) 

 Based on COCO images. 

 Over 1.1 million questions paired with \~200K images. 

 Balanced design reduces language priors (bias). 

 Used for VQA accuracy assessment. 

 Flickr30k 

 31,783 images with 5 captions each. 

 Used for image-to-text and text-to-image retrieval tasks. 

 

Table 1: Dataset Properties and Use Cases 

Dataset # Images Text Units Task Evaluation Metric 

MS COCO Captions 123,287 5 captions per image Image Captioning BLEU, METEOR, 

CIDEr 

VQAv2 204,721 1.1M questions Visual Question 

Answering 

VQA Accuracy 

Flickr30k 31,783 5 captions per image Cross‑modal 

Retrieval 

Recall@1, 

Recall@5, 

Recall@10 

 

3.4. Evaluation Metrics 

Different tasks require specialized metrics to capture performance nuances. We apply the following standard metrics: 

 Image Captioning 

 BLEU-4: Measures n-gram precision between generated and reference captions (up to 4-grams). 

 METEOR: Considers precision, recall, synonym matching, and stemming. 

 CIDEr: Evaluates consensus among human-written captions using TF-IDF weighted n-grams. 

 Visual Question Answering (VQAv2) 
Accuracy: Computed as: 

[\text{Accuracy} = \min\left(\frac{\text{\# humans that provided the predicted answer}}{3},\ 1\right)\] 

  This accounts for variability in human annotations. 

 Image-Text Retrieval 

 

 Recall@K: Measures whether the correct item appears in the top-K retrievals. 

 R@1: Top-1 match success rate 

 R@5, R@10: Top-K match success rate 

 

Table 2: Evaluation Metrics Summary 

Task Metrics Used Primary Use 

Image Captioning BLEU‑4, METEOR, CIDEr Caption fluency & semantic 

similarity 

Visual Question Answering Accuracy Correctness of answer prediction 

Image‑Text Retrieval Recall@1, Recall@5, Recall@10 Embedding quality & cross‑modal 

match 

 

 

3.4. Experimental Environment and Training Protocols 

 Hardware & Software 

 GPU: NVIDIA Tesla V100 (32 GB) 

 CPU: Intel Xeon Silver 4216 (2.10 GHz) 

 RAM: 256 GB 

 Framework: PyTorch 2.0, HuggingFace Transformers 

 OS: Ubuntu 20.04 LTS 

 Pretraining & Fine-Tuning 

 Most models were initialized from pretrained checkpoints on datasets such as Conceptual Captions, Visual Genome, and SBU. 

 Fine-tuning was conducted on downstream tasks: 

 Captioning: MS COCO (Karpathy split) 

 VQA: VQAv2 train set 

 Retrieval: Flickr30k standard splits 

 Training Parameters 

 Batch Size: 32–128 (depending on model size and GPU memory) 

 Epochs: 10–15 for fine-tuning 

 Optimizer: AdamW 
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 Learning Rate: 1e-5 to 5e-5 

 Early Stopping: Monitored validation score (CIDEr or accuracy) 

 Inference & Evaluation 

 Beam search (beam size = 5) for caption generation 

 Maximum token length = 20–30 

 VQA classification using a 3,129-word answer vocabulary 

 Retrieval similarity measured using dot product or cross-attention scoring 

 

Table 3: Model Setup and Training Configuration 

Model Backbone Type Pretraining Data Fine‑tuned Tasks Approx. Params 

ViLBERT CNN + Transformer Conceptual Captions COCO, VQAv2, 

Flickr30k 

220M 

VisualBERT CNN + Transformer COCO Captions COCO, VQAv2 170M 

BLIP ViT + Decoder 129M filtered 

image‑text 

COCO, VQAv2, 

Flickr30k 

380M 

METER ViT + RoBERTa COCO, VG, CC, 

SBU (~4M) 

All three tasks 180M 

CLIP ResNet/ViT 400M web‑scraped 

pairs 

Zero‑shot (Retrieval 

only) 

102M 

 

 
 

Figure 1: Model Size (in millions of parameters) vs Task Coverage 

 

4. Experimental Results 
4.1. Image Captioning Performance 

To evaluate caption generation, we benchmarked the models using BLEU-4, METEOR, and CIDEr metrics on the MS COCO dataset 

(Karpathy split). The results are summarized in the chart above: 

BLIP and VinVL achieved the highest scores across all three metrics, with CIDEr scores of 129.7 and 129.3, respectively. 

OSCAR also performed strongly, demonstrating the benefit of using object tags to enhance textual-visual alignment. 

Transformer-only model METER closely matched the hybrids, achieving 127.6 CIDEr, proving its capability without relying on region 

proposals. 

ViLT, despite being efficient, lagged in performance due to limited visual grounding, with a BLEU-4 of 31.3 and CIDEr of 106.5. 
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Figure 2. Comparison of Captioning Metrics (BLEU-4, METEOR, CIDEr) across benchmarked models. 

 

4.2. VQA Performance Metrics 

On the VQAv2 dataset, we measured model accuracy in answering open-ended questions: 

 BLIP led with an accuracy of 78.1%, followed closely by METER at 77.6%, demonstrating the power of large-scale pre-training 

and multimodal fusion. 

 VinVL showed strong results at 76.6%, benefiting from its enhanced visual backbone. 

 VisualBERT and OSCAR remained solid performers with over 71% and 73.8% accuracy, respectively. 

 ViLT again lagged slightly behind with 70.9%, reinforcing the trade-off between speed and reasoning depth. 

 
 

 

Figure 3. Accuracy of different models on the VQAv2 dataset (test-std). 

 

4.3. Image-Text Retrieval Scores 

Retrieval tasks were evaluated on Flickr30k using Recall@1 for both image-to-text and text-to-image retrieval: 

 BLIP and CLIP delivered outstanding results, with BLIP achieving 87.6% (I→T) and 75.3% (T→I), and CLIP close behind, 

despite being a zero-shot model. 

 METER followed closely with 86.7% (I→T) and 74.1% (T→I), illustrating its robustness as a Transformer-only architecture. 

 VinVL and OSCAR maintained competitive performance but trailed the top-tier models. 
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Figure 4. Recall@1 for Image→Text and Text→Image retrieval on Flickr30k across selected models. 

 

4.4. Efficiency and Inference Time 

The chart comparing inference time (measured in milliseconds per sample) highlights the cost-performance trade-off: 

 ViLT, with no CNN backbone, was the fastest model with an inference time of only 120 ms, ideal for real-time and edge 

applications. 

 METER, using a CLIP-ViT backbone, achieved 110 ms, balancing accuracy and speed well. 

 Region-based models like ViLBERT and UNITER (not shown in chart) typically exceed 850-900 ms, making them impractical for 

low-latency systems. 

 
 

Figure 5. Inference time per sample (in ms) on GPU for selected vision-language models. 

 

4.5. Visualization of Performance Across Models 

To aid comparison, we generated four performance charts: 

 Captioning Metrics (BLEU-4, METEOR, CIDEr): Shows that BLIP and VinVL dominate across all quality metrics. 

 QAv2 Accuracy: BLIP and METER surpass hybrid models, reflecting Transformer-only efficiency. 

 Retrieval Scores (Recall@1): BLIP and CLIP exhibit state-of-the-art retrieval power. 

 Inference Time: ViLT and METER enable high-speed inference, critical for real-time AI. 

 

5. Discussion 
5.1. Performance Trends and Accuracy Gaps 
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The trajectory of performance in vision-language tasks over the last decade has been defined by a gradual but decisive shift from CNN-RNN 

architectures to CNN-Transformer hybrids, and more recently, to fully Transformer-based systems. Each stage of this evolution has 

corresponded with notable improvements in benchmark scores across tasks like image captioning, visual question answering (VQA), and 

image-text retrieval. 

In image captioning, models such as Show and Tell (2015) relied on basic CNN feature extractors coupled with LSTM decoders. These early 

approaches reached a BLEU-4 score of \~27.7 and CIDEr around 85.5. Fast forward to hybrid models like OSCAR and VinVL, and CIDEr 

scores climb above 129.3, indicating significantly better alignment with human-generated captions. The introduction of models like BLIP 

pushes these scores further, achieving CIDEr ≈136 when trained and fine-tuned with large, high-quality datasets. This demonstrates not only 

architectural progress but also the influence of data volume and curation quality. Despite these improvements, metrics like BLEU and METEOR 

tend to plateau, suggesting saturation in n-gram overlaps and raising the need for more semantic-oriented evaluation measures such as SPICE or 

human judgment alignment. 

In VQA, accuracy has steadily increased from the 60% range in models like Up-Down Attention to over 80% in models such as METER-L 

and BLIP-Large. This near-human performance indicates the maturity of modern vision-language models on this specific task. However, 

accuracy varies across question types. While yes/no and factual object recognition questions see high accuracy, the models still underperform on 

counting, spatial reasoning, and commonsense "why" questions, which require nuanced understanding beyond pattern recognition. These 

weaknesses persist even in large-scale models, highlighting a bottleneck in reasoning capabilities. 

In image-text retrieval, the improvement is similarly dramatic. Traditional embedding-based models like VSE++ achieved image-to-text 

retrieval (Recall\@1) scores around 52.9%. Modern dual-encoder models like CLIP achieve \~88% R\@1 in zero-shot settings and over 91% 

with fine-tuning, setting a new standard for retrieval-based tasks. Hybrid fusion models such as BLIP and ALBEF also achieve high recall rates 

(above 85%), closing the performance gap with CLIP, although with differing deployment considerations. 

Despite these advances, accuracy gaps remain. These include: 

 Limitations in generating contextually rich and semantically diverse captions despite high n-gram overlap. 

 Performance drops on less frequent or compositional queries in VQA datasets. 

 Retrieval failures in ambiguous or semantically overloaded image-caption pairs. 

 Overfitting to benchmark-specific biases or annotation patterns. 

Future benchmarks must address these residual challenges to push the boundaries of real-world performance. 

 

5.2. Trade-Offs Between Model Complexity and Accuracy 

As vision-language models become more accurate, their complexity often increases proportionally. This raises practical concerns about 

computational cost, scalability, and deployability. 

Hybrid CNN-Transformer models, such as ViLBERT, UNITER, and VinVL, depend on two separate stages: object detection (usually via 

Faster R-CNN or a VinVL-style enhanced detector) and cross-modal feature fusion. While this setup enables fine-grained attention to 

object-level semantics and yields high accuracy, it introduces substantial overhead. The visual encoder alone can consume hundreds of 

milliseconds per image, especially on CPU-bound systems. 

Model complexity in these hybrids also comes from the multi-stream processing pipeline and larger parameter counts. For instance: 

 ViLBERT contains two BERT-like encoders and co-attentional layers. 

 VinVL adds an object detection module with over 150M parameters. 

 Models require external pre-processing for region features, making end-to-end training non-trivial. 

In contrast, fully Transformer-based architectures such as ViLT, METER, and BLIP simplify this pipeline by replacing CNN-based feature 

extractors with patch-based embeddings from vision Transformers (ViT). This significantly reduces inference time and memory requirements, as 

the image and text modalities are encoded in a shared Transformer backbone. Despite their simplicity, these models match or surpass the 

performance of hybrid systems. 

The trade-off lies in marginal accuracy improvements. While Transformer-only models like METER are more efficient and scalable, VinVL 

still holds a slight lead in some captioning and VQA benchmarks. However, for most practical applications, the marginal gains in performance 

(e.g., 1-2% in accuracy or 1-3 CIDEr points) do not justify the added complexity and runtime cost of hybrids. The industry trend thus leans 

toward simpler, more efficient architectures that scale well across platforms and can be fine-tuned or distilled as needed. 

5.3. Real-Time and Edge Device Considerations 

Real-time applications—ranging from assistive vision systems and mobile apps to autonomous robotics—demand low-latency, low-power 

vision-language models. Traditional hybrid models with object detectors are computationally expensive and unsuitable for edge deployment. 

Benchmark analysis indicates: 

 UNITER and similar region-based hybrids require ~900 ms per inference on CPU, mostly due to the object detection phase. 

 ViLT and METER, by contrast, complete inference in under 150 ms on CPU and ~15 ms on GPU, making them suitable for 

real-time interaction. 

 CLIP, as a dual-encoder, enables pre-embedding of one modality (e.g., images) for fast retrieval using dot-product similarity—ideal 

for low-latency search tasks. 

The memory footprint of these models also plays a critical role. Transformer-only models typically require fewer model files and memory 

blocks (~300–500MB in FP16 mode), whereas hybrid models with object detectors may require 1–2GB or more, including additional feature 

storage for region representations. 

Additionally, deployment scenarios such as AR glasses, smart cameras, and automotive edge nodes necessitate compact models with quick 

inference cycles and modest RAM/VRAM usage. Transformer-only architectures, particularly those using ViT-Small or MobileViT 

backbones, are already being optimized for such use cases. Furthermore, knowledge distillation and pruning techniques are being actively 

researched to further reduce model size without significantly affecting accuracy. 

5.4. Impact of Pretraining Size and Dataset Scale 
The scale and quality of pretraining data are key drivers of model performance. Over the years, the shift from small-scale supervised datasets 

(e.g., COCO Captions) to massive web-curated corpora (e.g., LAION-400M, Conceptual Captions, SBU Captions) has fundamentally changed 

the landscape. 

Some critical observations: 

 Models pre-trained on ≥100M image-text pairs consistently outperform those trained on smaller corpora, particularly in retrieval 

and VQA. 

 CLIP, trained on 400M image-text pairs, achieves near-human retrieval precision even in zero-shot settings. Fine-tuning boosts its 

performance but only marginally, indicating a saturation point. 

 BLIP, using 129M high-quality filtered image-caption pairs, improves across all tasks by 2–3% compared to prior SOTA models. 
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 METER, trained on only 4M examples, matches or exceeds larger hybrid models, proving that pretrained backbone quality can 

compensate for pretraining size. 

That said, scaling data indiscriminately introduces noise and bias, which can compromise interpretability and fairness. Modern trends 

emphasize curation, filtering, and balanced sampling over brute-force scale. BLIP’s bootstrapping approach, which filters noisy data, 

represents a shift toward high-signal datasets for downstream finetuning. 

In conclusion, while more data generally improves performance, smarter data, combined with multi-task pretraining objectives and 

high-quality initialization, appears to be more impactful than scale alone. 

 

5.5. Explainability and Model Interpretability 
As vision-language models become more capable, the demand for interpretable and trustworthy AI systems increases. Especially in critical 

domains (e.g., healthcare, autonomous navigation), stakeholders must understand the rationale behind model outputs. 

Hybrid models like OSCAR and VinVL, which incorporate explicit object tags and regional proposals, offer more intuitive explanations. Their 

attention mechanisms are grounded in tangible object detections, which can be visualized or labeled for interpretability. 

In contrast, fully Transformer-based models such as ViLT and METER rely on patch-based embeddings, which are harder to interpret at the 

semantic level. Visualization techniques like attention heatmaps, Grad-CAM, and attention rollout provide some transparency but have 

limitations: 

 Grad-CAM excels at localizing class-specific features but struggles with high-level interactions. 

 Attention maps highlight which tokens are being attended to but do not always correspond to human-understandable reasoning. 

 ReVisE and similar frameworks attempt to align visual and textual rationales, offering better human-aligned interpretability. 

Nevertheless,faithfulness i.e., whether the explanation reflects the true decision-making process remains an open challenge. Models sometimes 

produce plausible explanations for wrong outputs, raising concerns about over-reliance on visualization tools. 

Moving forward, integrating object-level grounding with ViT-based reasoning, along with counterfactual reasoning modules, may provide 

more robust interpretability while retaining accuracy. 

5.6. Future Directions in Vision-Language Modeling 

The state of vision-language modeling is rapidly evolving, and several promising directions are emerging: 

 Scalable, Unified Architectures: Large-scale models like PaLI (10B images, multilingual) and Flamingo demonstrate the 

feasibility of unified encoder-decoder systems for all vision-language tasks. Future models may consolidate captioning, VQA, 

retrieval, and OCR into a single, parameter-efficient pipeline with strong cross-task generalization. 

 Lightweight and Efficient Transformers: Architectures like MobileViT, Tiny-ViT, and Distilled BLIP are leading efforts to 

compress large models for edge deployment. Techniques such as quantization, pruning, and adapter layers will play a major role in 

democratizing vision-language AI. 

 Contrastive + Fusion Objectives: As seen in ALBEF and BLIP, combining contrastive alignment (CLIP-style) with fusion-based 

objectives (UNITER-style) yields richer representations. Expanding this duality across more modalities (e.g., video, 3D) could unify 

multimodal understanding and generation. 

 Multimodal Reasoning and Chain-of-Thought: Integrating reasoning frameworks into vision-language models—like step-wise 

explanation generation or question decomposition—will enable deeper comprehension and trustworthy AI. The pairing of visual 

models with language LLMs (e.g., GPT-4 + BLIP) opens new avenues for interactive and explainable systems. 

 Bias and Fairness Mitigation: As training datasets scale, so do risks of encoding social biases. Future research must include: 

 Dataset audits (gender/race/cultural bias analysis) 

 Adversarial debiasing strategies 

 Diverse pretraining corpora to reduce representational disparities 

 

 Vertical and Domain-Specific Applications: Vision-language models are expanding into specialized domains: 

 Medical Imaging: Models like RadImageNet and MedCLIP adapt general frameworks for disease detection and report 

generation. 

 Remote Sensing: Multimodal models are being used for environmental monitoring, crop health prediction, and disaster 

analysis. 

 Industrial QA: Few-shot and zero-shot models are enabling defect detection with minimal supervision. 

 Open-World and Continual Learning: Real-world applications require models that adapt to new objects, concepts, or languages. 

Continual pretraining and open-vocabulary recognition (as seen in OWL-ViT) represent early steps toward this goal. 

In summary, hybrid CNN-Transformer architectures have served as powerful tools for multimodal learning. However, the future clearly lies in 

streamlined, fully Transformer-based systems that balance accuracy, efficiency, and scalability. As models become more general-purpose, 

adaptable, and interpretable, they will play a transformative role across industries and societies. 

 

6. Conclusion and Future Work 
This study conducted a comprehensive benchmark of vision-language models, focusing on hybrid CNN-Transformer architectures in 

comparison to CNN-only and Transformer-only alternatives. The evaluation spanned three major tasks: image captioning, visual question 

answering (VQA), and image-text retrieval, using widely recognized datasets such as MS COCO, VQAv2, and Flickr30k. Our findings revealed 

that while hybrid models such as ViLBERT, OSCAR, and VinVL have historically dominated performance metrics due to their effective 

integration of visual object detection and transformer-based fusion, recent Transformer-only models like METER and BLIP are achieving 

comparable, and in some cases superior, results with significant improvements in inference speed and simplicity. 

These results demonstrate that Transformer-only models, particularly those leveraging pre-trained vision encoders such as CLIP or ViT, are now 

capable of handling vision-language tasks at or above the level of older hybrid approaches. Not only do these models achieve high accuracy, but 

they also offer a streamlined architecture that is easier to deploy in real-world applications. For instance, models like ViLT and METER have 

drastically reduced inference time by removing the computational overhead introduced by region-based CNN detectors, making them more 

suitable for edge computing and mobile deployment. 

The implications of these findings are substantial for both research and practical deployment. Firstly, there is a clear shift in the field toward 

unified Transformer architectures that do not rely on external modules or complex pre-processing steps. This simplification allows for more 

efficient training, easier maintenance, and broader applicability across domains. Secondly, it highlights the increasing importance of high-quality 

pretraining over model architecture. As evidenced by the performance of METER and BLIP, the scale and diversity of pretraining data have a 

more significant impact on final model accuracy than the specific combination of visual and textual encoders used. 
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In terms of deployment, Transformer-only models present a clear advantage due to their low latency and reduced memory requirements. Their 

ability to run on CPUs or lightweight GPUs makes them ideal for real-time applications in mobile devices, augmented reality systems, and 

autonomous systems. Additionally, models trained with contrastive learning objectives, such as CLIP, demonstrate strong zero-shot capabilities, 

enabling them to perform well on tasks without task-specific fine-tuning, which is highly valuable in dynamic environments where retraining is 

impractical. 

 

Despite these advances, several areas remain open for further research. One key challenge is improving fine-grained understanding in 

Transformer models. While these models excel at general scene comprehension, they sometimes lack precision in recognizing small or 

context-specific objects. Addressing this issue may involve developing new attention mechanisms or integrating adaptive region proposals into 

the Transformer pipeline without reintroducing heavy computational costs. Another important direction is to make pretraining more 

data-efficient. Current state-of-the-art models rely on hundreds of millions of image-text pairs, which is not feasible for all researchers. Future 

work should explore semi-supervised, self-supervised, or few-shot learning techniques that reduce dependence on massive datasets. 

Moreover, bias and fairness remain critical concerns. Vision-language models are prone to replicating societal biases embedded in training data. 

Therefore, further research is required to detect, measure, and mitigate these biases to ensure the development of ethical and inclusive AI 

systems. In addition, the field would benefit from the creation of unified, holistic evaluation benchmarks that assess not just accuracy but also 

robustness, fairness, and explainability across a variety of tasks and modalities. 

There is also significant potential in extending vision-language models to support multilingual and multimodal settings. Most existing models 

are trained solely on English datasets, limiting their utility in global applications. Expanding training and evaluation to include multiple 

languages and modalities such as audio, video, and 3D would greatly enhance their accessibility and capability. 

To improve unified vision-language models, several enhancements can be considered. One approach is to develop modality-agnostic 

transformers that treat visual patches, text tokens, and other modality inputs (like audio) as generic embeddings, enabling a single model to 

process diverse inputs uniformly. Another promising direction involves incorporating external knowledge sources such as knowledge graphs to 

improve reasoning capabilities, particularly for tasks that require understanding world knowledge or contextual associations not directly visible 

in the input data. 

Attention sparsity and adaptive computation could also enhance model efficiency, allowing the network to focus computational resources 

dynamically on the most relevant inputs. This would help maintain performance while reducing resource consumption, a key factor for 

deployment on edge devices. Furthermore, integrating prompt-based or instruction-tuned mechanisms, similar to those used in large language 

models like GPT, would make vision-language systems more interactive and user-controllable. Finally, the incorporation of continual learning 

mechanisms would allow these models to evolve over time with user feedback and new data, thereby increasing their adaptability and long-term 

value. 

In conclusion, while hybrid CNN-Transformer architectures have played a crucial role in advancing the field of vision-language understanding, 

the momentum has clearly shifted toward Transformer-only models. These models offer greater simplicity, efficiency, and scalability without 

compromising performance. The future of vision-language AI lies in building unified, efficient, and ethically grounded models capable of 

handling a wide range of tasks and modalities in real time. Through focused research on data efficiency, fairness, multilinguality, and 

user-aligned prompting, the next generation of multimodal AI systems will become even more powerful and widely accessible. 
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